队列(Queue):具有先进先出的特性,支持在队尾插入元素,在队头删除元素的特性。

队列是一种操作受限的线性表数据结构,包含两个操作,入队 enqueue(),放一个数据到队列尾部;出队 dequeue(),从队列头部取一个元素。

用数组实现的队列,我们叫作顺序队列,用链表实现的队列,我们叫作链式队列

队列的数组实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// 用数组实现的队列
public class ArrayQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head 表示队头下标,tail 表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为 capacity 的数组
public ArrayQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队操作,将 item 放入队尾
public boolean enqueue(String item) {
// tail == n 表示队列末尾没有空间了
if (tail == n) {
// tail ==n && head==0,表示整个队列都占满了
if (head == 0) return false;
// 数据搬移
for (int i = head; i < tail; ++i) {
items[i-head] = items[i];
}
// 搬移完之后重新更新 head 和 tail
tail -= head;
head = 0;
}
items[tail] = item;
++tail;
return true;
}
// 出队
public String dequeue() {
// 如果 head == tail 表示队列为空
if (head == tail) return null;
String ret = items[head];
++head;
return ret;
}
}

队列的链表实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public class LinkedQueue {
private Node head = null;
private Node tail = null;
private static class Node {
int value;
Node next;
public Node(int value) {
this.value = value;
this.next = null;
}
}
public boolean enqueue(int value) {
Node newNode = new Node(value);
if (head == null) {
head = newNode;
tail = newNode;
} else {
tail.next = newNode;
tail = newNode;
}
return true;
}
public int dequeue() {
if (head == null) {
return -1;
}
Node node = head.next;
int value = node.value;
head = node;
return value;
}
}

循环队列

具有队头指针和队尾指针,指示队列元素所在的位置,避免删除元素时移动大量元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class CircularQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head 表示队头下标,tail 表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为 capacity 的数组
public CircularQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 队列满了
if ((tail + 1) % n == head) return false;
items[tail] = item;
tail = (tail + 1) % n;
return true;
// 出队
// 如果 head == tail 表示队列为空
if (head == tail) return null;
String ret = items[head];
head = (head + 1) % n;
return ret;
}
}

阻塞队列

阻塞队列其实就是在队列基础上增加了阻塞操作。
在队列为空的时候,从队头取数据会被阻塞;队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后再返回。

生产者 - 消费者模型

当“生产者”生产数据的速度过快,“消费者”来不及消费时,存储数据的队列很快就会满了。这个时候,生产者就阻塞等待,直到“消费者”消费了数据,“生产者”才会被唤醒继续“生产”。

并发队列

线程安全的队列我们叫作并发队列。

直接在 enqueue()、dequeue() 方法上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或者取操作基于数组的循环队列,利用 CAS 原子操作,可以实现非常高效的并发队列。

问题

线程池没有空闲线程时,新的任务请求线程资源时,线程池该如何处理?各种处理策略又是如何实现的呢?
两种处理策略;
第一种是非阻塞的处理方式,直接拒绝任务请求;另一种是阻塞的处理方式,将请求排队,等到有空闲线程时,取出排队的请求继续处理

队列两种实现方式对于排队请求有什么区别呢?
基于链表的实现方式,可以实现一个支持无限排队的无界队列(unbounded queue),但是可能会导致过多的请求排队等待,请求处理的响应时间过长。所以,针对响应时间比较敏感的系统,基于链表实现的无限排队的线程池是不合适的。

而基于数组实现的有界队列(bounded queue),队列的大小有限,所以线程池中排队的请求超过队列大小时,接下来的请求就会被拒绝,这种方式对响应时间敏感的系统来说,就相对更加合理。不过,设置一个合理的队列大小,也是非常有讲究的。队列太大导致等待的请求太多,队列太小会导致无法充分利用系统资源、发挥最大性能。

对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。