定义

堆(Heap)是一种特殊的树。

  • 堆是一个完全二叉树;
  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

最大堆(max heap):每个节点的值都大于等于子树中每个节点值的堆。
最小堆(min heap):每个节点的值都小于等于子树中每个节点值的堆。

操作

完全二叉树比较适合用数组来存储,数组存储非常节省存储空间。因为不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)

插入

往堆中插入一个元素,我们需要进行调整,让其重新满足堆的特性,这个过程叫作堆化(heapify)

堆化,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class Heap {
private int[] a; // 数组,从下标 1 开始存储数据
private int n; // 堆可以存储的最大数据个数
private int count; // 堆中已经存储的数据个数

public Heap(int capacity) {
a = new int[capacity + 1];
n = capacity;
count = 0;
}

public void insert(int data) {
if (count >= n) return; // 堆满了
++count;
a[count] = data;
int i = count;
while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素
i = i/2;
}
}
}

删除

最大堆,当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

最小堆,操作类似,只是元素变为第二小的元素,然后依次迭代。

简化实现,删除元素后,将最后一个节点放到删除位置,然后利用同样的父子节点对比方法,进行堆化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public void removeMax() {
if (count == 0) return -1; // 堆中没有数据
a[1] = a[count];
--count;
heapify(a, count, 1);
}

private void heapify(int[] a, int n, int i) { // 自上往下堆化
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}

应用

堆排序